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1. (a) If A is heated, then water will flow from B to A. The reason can be seen as
follows. The pressure at depth h is given by P = ρgh. When the water in A
expands, the height h increases, but the density ρ decreases. What happens to the
product ρh? The density goes like 1/A, where A is the area of the trapezoidal
cross section. But A = wh, where w is the width at half height. Therefore,
P = ρgh ∝ h/A = 1/w. And since w increases as the water level rises, the
pressure in A decreases, and water flows from B to A.

(b) If B is heated, then water will again flow from B to A. The same reasoning used
above works here, except than now the w in container B decreases, so that the
pressure in B increases, so that the water again flows from B to A.

2. Let F be the tension in the string. The angle (at the mass) between the string and the
radius of the dotted circle is θ = sin−1(r/R). In terms of θ, the radial and tangential
F = ma equations are

F cos θ = mv2/R, and
F sin θ = mv̇. (1)

Solving for F in the second equation and substituting into the first gives

mv̇ cos θ

sin θ
=

mv2

R
. (2)

Separating variables and integrating gives
∫ v

v0

dv

v2
=

tan θ

R

∫ t

0
dt

=⇒ 1
v0
− 1

v
=

tan θ

R
t

=⇒ v =
(

1
v0
− tan θ

R
t

)−1

. (3)

Note that v becomes infinite when

t = T ≡ R

v0 tan θ
. (4)

In other words, you can keep the mass moving in the desired circle only up to time
T . After that, it is impossible. (Of course, it will become impossible, for all practical
purposes, long before v becomes infinite.)

The total distance, d =
∫

v dt, is infinite, because this integral (barely) diverges (like
a log), as t approaches T .
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3. Let V be the initial speed. The horizontal speed and initial vertical speed are then
V cos θ and V sin θ, respectively. You can easily show that the distance traveled in
the air is the standard

dair =
2V 2 sin θ cos θ

g
. (5)

To find the distance traveled along the ground, we must determine the horizontal
speed just after the impact has occurred. The normal force, N , from the ground is
what reduces the vertical speed from V sin θ to zero, during the impact. So we have

∫
N dt = mV sin θ, (6)

where the integral runs over the time of the impact. But this normal force (when
multiplied by µ, to give the horizontal friction force) also produces a sudden decrease
in the horizontal speed, during the time of the impact. So we have

m∆vx = −
∫

(µN) dt = −µmV sin θ =⇒ ∆vx = −µV sin θ. (7)

(We have neglected the effect of the mg gravitational force during the short time of
the impact, since it is much smaller than the N impulsive force.) Therefore, the brick
begins its sliding motion with speed

v = V cos θ − µV sin θ. (8)

Note that this is true only if tan θ ≤ 1/µ. If θ is larger than this, then the horizontal
speed simply becomes zero, and the brick moves no further. (Eq. (8) would give a
negative value for v.)

The friction force from this point on is µmg, so the acceleration is a = −µg. The
distance traveled along the ground can easily be shown to be

dground =
(V cos θ − µV sin θ)2

2µg
. (9)

We want to find the angle that maximizes the total distance, dtotal = dair + dground.
From eqs. (5) and (9) we have

dtotal =
V 2

2µg

(
4µ sin θ cos θ + (cos θ − µ sin θ)2

)

=
V 2

2µg
(cos θ + µ sin θ)2. (10)

Taking the derivative with respect to θ, we see that the maximum total distance is
achieved when

tan θ = µ. (11)

Note, however, that the above analysis is valid only if tan θ ≤ 1/µ (from the comment
after eq. (8)). We therefore see that if:

• µ < 1, then the optimal angle is given by tan θ = µ. (The brick continues to
slide after the impact.)
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• µ ≥ 1, then the optimal angle is θ = 45◦. (The brick stops after the impact, and
θ = 45◦ gives the maximum value for the dair expression in eq. (5).)

4. The key point in this problem is that the sheet expands about a certain stationary
point, but contracts around another (so that it ends up moving down the roof like an
inchworm). We must find the locations of these two points.

Let’s consider the expansion first. Let the stationary point be a distance a from the
top and b from the bottom (so a+b = `). The lower part of the sheet, of mass m(b/`),
will be moving downward along the roof. Therefore, it will feel a friction force upward,
with magnitude µN = µm(b/`)g cos θ. Likewise, the upper part, of mass m(a/`), will
feel a friction force downward, with magnitude µm(a/`)g cos θ.

Because the sheet is not accelerating, the difference in these two friction forces must
equal the downward force of gravity along the roof, namely mg sin θ. Therefore,

µm

(
b− a

`

)
g cos θ = mg sin θ

=⇒ b− a =
` tan θ

µ
. (12)

Note that this implies b > a. Also note that b − a of course cannot be greater than
`; therefore, if tan θ > µ, then there are no solutions for a and b, so the forces cannot
balance, and so the sheet will accelerate down the roof. (This tan θ > µ result is a
general result, of course, for the equilibrium of an object on an inclined plane.)

When the object contracts, all of the above analysis holds, except that now the roles
of a and b are reversed. The stationary point is now closer to the bottom. With a
and b defined in the same way as above, we find (as you can verify)

a− b =
` tan θ

µ
. (13)

Putting eqs. (12) and (13) together, we see that the stationary points of expansion
(Pe) and contraction (Pc) are separated by a distance

d =
` tan θ

µ
. (14)

During the expansion, the point Pc moves downward a distance

ε = αd ∆T =
α` tan θ∆T

µ
. (15)

and then during the contraction it remains fixed. (Equivalently, the center of the sheet
moves downward by a distance of half this, for both the expansion and contraction.)
Therefore, during one complete cycle (that is, during a span of 24 hours), the sheet
moves downward by the distance ε given above.

Plugging in the given numbers, we see that the distance the sheet moves in one year
is given by

(365)ε =
(365)(17 · 10−6(C◦)−1)(1m)(tan 30◦)(10◦C)

1
≈ 0.036m = 3.6 cm. (16)
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5. (a) The image charge lags behind the given charge by a distance vτ . Therefore,
from the pythagorean theorem, the separation between the two charges is d =√

(2r)2 + (vτ)2 . The force necessary to maintain constant motion (parallel to
the plate) is the negative of the Coulomb force between the charges. Hence, the
desired force is

F =
kq2

d2
=

kq2

4r2 + v2τ2
. (17)

This force points at an angle of θ with respect to the normal to the plate, where
θ is given by

tan θ =
vτ

2r
. (18)

(b) The component of the above force in the direction of v is

Fv ≡ F sin θ =
kq2

4r2 + v2τ2

(
vτ√

4r2 + v2τ2

)
. (19)

To first order in the small quantity vτ , we may neglect the vτ terms in the
denominator. Therefore,

Fv ≈ kq2vτ

8r3
. (20)

This is the force necessary to overcome the damping force, F = −γv. So we see
that

γ =
kq2τ

8r3
. (21)

(c) For motion perpendicular to the plate, the lagging motion of the image charge
implies that the charges will be a distance 2r + vτ apart. The force between
them is therefore

F =
kq2

(2r + vτ)2
≈ kq2

4(r2 + rvτ)
≈ kq2(r2 − rvτ)

4r4
=

kq2

4r2
− kq2vτ

4r3
. (22)

We see that the attractive force is slightly less than it would be if v were zero.
This is due to the damping force, F = −γv, where

γ =
kq2τ

4r3
. (23)

6. Let ` and θ be the length of the string and the angle it makes with the pole, respec-
tively, as functions of time.

The two facts we will need to solve this problem are: (1) the radial F = ma equation,
and (2) the conservation of energy statement.

Approximating the motion at any time by a horizontal circle (of radius ` sin θ), we see
that the vertical force applied by the string is mg, and hence the horizontal force is
mg tan θ. Therefore, the radial F = ma equation is

mv2

` sin θ
= mg tan θ. (24)
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Conservation of energy says that the change in KE plus the change in PE is zero.
We’ll write the change in KE simply as d(mv2/2) for now. We claim that the change
in PE is given by mg` sin θ dθ. This can be seen as follows.

Put a mark on the string a small distance d` down from the contact point. After a
short time, this mark will become the contact point. The height of this mark will not
change (to first order, at least) during this process. This is true because initially the
mark is a height ` cos θ below the initial contact point. And it is still (to first order)
this far below the initial contact point when the mark becomes the contact point,
because the angle is still very close to θ, so any errors will be of order d` dθ.

The change in height of the ball relative to this mark (whose height is essentially
constant) is due to the ` − d` length of string in the air “swinging” up through an
angle dθ. Multiplying by sin θ to obtain the vertical component of this arc, we see
that the change in height is ((`− d`)dθ) sin θ. This equals ` sin θ dθ, to first order, as
was to be shown.

Therefore, conservation of energy gives

1
2
d(mv2) + mg` sin θ dθ = 0. (25)

We will now use eqs. (24) and (25) to solve for ` in terms of θ. Substituting the v2

from eq. (24) into eq. (25) gives

d(` sin θ tan θ) + 2` sin θ dθ = 0
=⇒ (d` sin θ tan θ + ` cos θ tan θ dθ + ` sin θ sec2 θ) + 2` sin θ dθ = 0

=⇒ d`
sin2 θ

cos θ
+ 3` sin θ dθ + `

sin θ

cos2 θ
= 0

=⇒
∫

d`

`
= −

∫ 3 cos θ dθ

sin θ
−

∫
dθ

sin θ cos θ

=⇒ ln ` = −3 ln(sin θ) + ln
(

cos θ

sin θ

)
+ C

=⇒ ` = A
cos θ

sin4 θ
, where A = L

(
sin4 θ0

cos θ0

)
(26)

is determined from the initial condition, ` = L when θ = θ0. Note that this result
implies that θ = π/2 when the ball hits the pole (that is, when ` = 0). The last
integral in the fourth line above can be found in various ways. One is to multiply by
cos θ/ cos θ, and then note that dθ/ cos2 θ = d(tan θ).

Now let’s find the position where the ball hits the pole. The vertical distance a small
piece of the string covers is dy = d` cos θ. So the ball hits the pole at a y value
(relative to the top) given by

y =
∫

d` cos θ = A

∫
d

(
cos θ

sin4 θ

)
cos θ, (27)

where the integral runs from θ0 to π/2, and A is given in eq. (26). We may now
integrate by parts to obtain

y

A
=

(
cos θ

sin4 θ

)
cos θ −

∫ (
cos θ

sin4 θ

)
(− sin θ) dθ
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=
cos2 θ

sin4 θ
+

∫ cos θ

sin3 θ
dθ

=

(
cos2 θ

sin4 θ
− 1

2 sin2 θ

)∣∣∣∣∣
π/2

θ0

. (28)

Using the value of A given in eq. (26), we obtain

y = L

(
sin4 θ0

cos θ0

) (
−1

2
−

(
cos2 θ0

sin4 θ0
− 1

2 sin2 θ0

))

= L

(
sin4 θ0

cos θ0

) (
−cos2 θ0

sin4 θ0
+

cos2 θ0

2 sin2 θ0

)

= −L cos θ0

(
1− sin2 θ0

2

)
. (29)

Since the ball starts at a position y = −L cos θ0, we see that it rises up a distance
∆y = (1/2)L cos θ0 sin2 θ0 during the course of its motion. (This change in height
happens to be maximum when tan θ0 =

√
2, in which case ∆y = L/3

√
3.)

By conservation of energy, we can find the final speed from

1
2
mv2

f =
1
2
mv2

i −mg

(
1
2
L cos θ0 sin2 θ0

)
(30)

From eq. (24), we have

v2
i = gL

sin2 θ0

cos θ0
. (31)

Therefore,

1
2
mv2

f =
1
2
mgL

sin2 θ0

cos θ0
− 1

2
mgL cos θ0 sin2 θ0

=
1
2
mgL sin2 θ0

(
1

cos θ0
− cos θ0

)

=
1
2
mgL

sin4 θ0

cos θ0
. (32)

Hence,

v2
f = gL

sin4 θ0

cos θ0
. (33)

Combining eqs. (31) and (33), we finally have

vf

vi
= sin θ0. (34)
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